устройство, в котором когерентные электромагнитные колебания генерируются за счёт вынужденных квантовых переходов молекул из исходного энергетического состояния в состояние с меньшей внутренней энергией (см.
Когерентность, Квантовая электроника)
. М. г. - первый квантовый
генератор, созданный в 1954 Н. Г.
Басовым и А. М.
Прохоровым (СССР) и независимо от них Ч.
Таунсом
, Дж. Гордоном и Х. Цейгером (США). Оба варианта этого М. г. работали на молекулах аммиака NH
3 и генерировали электромагнитные колебания с частотой 24840
Мгц (длина волны λ = 1,24
см)
.
Для возбуждения генерации когерентных колебаний необходимо выполнение двух основных условий: в рабочем объёме прибора количество частиц в исходном состоянии должно быть больше, чем в состоянии с меньшей внутренней энергией (
Инверсия населённостей)
, должна быть обеспечена связь между частицами, излучающими в различные моменты времени (положительная
Обратная связь)
. В М. г. первое условие осуществляется электростатической сортировкой пучка молекул, а обратная связь при помощи объёмного резонатора (См.
Объёмный резонатор)
, настроенного на частоту, равную частоте излучения, сопровождающего переход молекулы из исходного энергетического состояния в конечное. Пучок молекул формируется при вылете молекул из источника в вакуум через узкие отверстия или капилляры (см.
Молекулярные и атомные пучки)
.
Электростатическая сортировка молекул по энергетическим состояниям в М. г. основана на том, что молекулы, обладающие электрическим дипольным моментом (например, молекулы NH
3), пролетая через неоднородное электрическое поле, отклоняются этим полем от прямолинейного пути по-разному в зависимости от энергии (см.
Штарка эффект)
. В первом М. г. сортирующая система представляла собой квадрупольный конденсатор, состоящий из 4 параллельных стержней специальной формы, соединённых попарно с высоковольтным выпрямителем (
рис.). Электрическое поле такого конденсатора весьма неоднородно, что вызывает искривление траекторий молекул NH
3, летящих вдоль его оси. Свойства молекул NH
3 таковы, что те из них, которые находятся в верхнем из используемой пары энергетических состояний, отклоняются к оси конденсатора и попадают внутрь объёмного резонатора. Молекулы, находящиеся в нижнем состоянии, отбрасываются в стороны и не попадают в резонатор. Отсортированный т. о. пучок содержит молекулы, находящиеся в верхнем энергетическом состоянии. Попадая внутрь резонатора, такие молекулы излучают под воздействием электромагнитного поля резонатора (вынужденное излучение). Излученные фотоны остаются внутри резонатора, усиливая его поле и увеличивая вероятность вынужденного излучения для молекул, пролетающих позже. Если интенсивность пучка активных молекул такова, что вероятность вынужденного излучения фотона больше, чем вероятности поглощения фотона в стенках резонатора, то возникает процесс самовозбуждения - быстро возрастает интенсивность электромагнитного поля резонатора на частоте перехода за счёт внутренней энергии молекул пучка. Это возрастание прекращается, когда поле в резонаторе достигает величины, при которой вероятность вынужденного испускания становится столь большой, что за время пролёта резонатора успевает испустить фотон как раз половина молекул пучка. При этом для пучка в целом вероятность поглощения становится равной вероятности вынужденного испускания (см.
Насыщения эффект)
. Мощность, генерируемая М. г. на пучке молекул NH
3, составляет 10
-8 вт, стабильность частоты генерации в пределах 10
-7-10
-11.
В дальнейшем были созданы М. г. на ряде других дипольных молекул, работающие в диапазоне сантиметровых и миллиметровых волн, и квантовые генераторы на пучке атомов водорода, работающие на длине волны 21
см. Эти приборы, как и квантовые усилители (См.
Квантовый усилитель) радиодиапазона, иногда называют
Мазерами
. Существует несколько конструктивных вариантов М. г., отличающихся устройством сортирующих систем, количеством резонаторов и т. п. К М. г. относят также квантовые генераторы, в которых инверсия населённости уровней молекул достигается не сортировкой, а другими способами, например воздействием вспомогательного электромагнитного поля (накачки), электрическим разрядом и др. В этом смысле к М. г. можно отнести и квантовые генераторы оптического диапазона (
Лазеры)
, рабочим веществом которых служат молекулярные газы (см.
Газовый лазер)
.
Лит.: Ораевский А. Н., Молекулярные генераторы, М., 1964; Григорьянц В. В., Жаботинский М. Е., Золин В. Ф., Квантовые стандарты частоты, М., 1968; Зингер Дж., Мазеры, М., 1961; Сигмен А., Мазеры, пер. с англ., М., 1966.
М. Е. Жаботинский.
Сортировка молекул по энергетическим состояниям с помощью квадрупольного конденсатора.